Translation project on 'About Hyperbolic Groups after Mikhail Gromov' by Etienne Ghys and Pierre de la Harpe

Update Log :

This is the celebrated Green Book on geometric group theory edited by Etienne Ghys and Pierre de la Harpe. The original title is in French. It is inaccessible for students whose primary means of accessing knowledge is English. Here I am referring more to non-native English speakers, who have already gone through the process of learning a second language to explore the mathematical world.

W.E. Grosso has a rough translation of this book. His work is available online for free. However the copy that we found goes up to Chapter ?? of the Springer title `About Hyperbolic Groups after Mikhail Gromov'. In this volume we have covered the entire book.

This project was taken up in the student research seminar at Cheentan Research Foundation. This continues to be a work in progress as we dig deeper into each of the chapters. The following students participated in the process.

Subarna Ghosh and Chalsi Garg helped in proof reading and fine tuning the content.

When we began this reading project the students knew almost no French. The group started learning French, using google translate and AI driven OCR softwares. All student participants were advanced undergraduates or early graduate school students with limited understanding of geometric group theory. Therefore they had to learn the basics of this vast subject. At any rate this has been a labor of love through barriers of language and concept.

We did not include the Appendix from the Springer version (on small cancellation groups by Ralph Strabel) as it is written in English. However we did include the Chapter 10 of Springer edition for the sake of continuity (though it is in English as well).

We have included some short notes at the end of the book. We call these notes `blogs'. They contain certain musings with the content. More of these will be added in future versions of this volume. These notes emerged from our weekly discussions and reading activity.

Apart from translation, we have also included some remarks in the margin. We foresee that the number of remarks will continue to grow in future.

In fact the reader will readily notice that the margin is considerably thicker than usual. Most of these comments were part of expanded discussions while working through the chapters. The goal of the marginalia is to be a cheerful companion for the reader. These are echoes from a not-so-distant past when a happy set of learners struggled through these ideas at late hours week after week. The comments in the marginalia includes several other references. Hence the bibliography of this volume is larger than that of the original text.

We think that some beginners in the field of geometric group theory may find this translation useful. Hence we have made a free copy available in the internet with the sole objective sharing knowledge.

Let us know if you find errors or have suggestions for improvement.

Thank you,

Ashani Dasgupta
Cheentan Research Foundation
Calcutta, 2022
ashani.dasgupta@cheenta.com

This is a work in progress. Check back for newer and more improved versions. New versions are usually uploaded every month.

Connectedness of Bowditch boundary of Dehn fillings

We study Dehn fillings of relatively hyperbolic group pairs (\Gamma, \P) and the persistence of connectedness of Bowditch boundary in sufficiently long Dehn fillings. We show that the restriction of peripheral subgroups to virtually polycyclic subgroups (as in [Groves-Manning, 2018]) is not needed.

Download the preprint here.

‘চিন্তন’-এর মোহানায় একা

অলোকরঞ্জন দাশগুপ্ত-র লেখায় মহাকবি গ্যোয়েটের একটা লাইন পেয়েছি, 'Entbehren sollst du, sollst entbehren' - বাইরের যখন সমস্ত বিরল তখনি নিজেকে ভালোরকম পাই।

বাইরে বৃষ্টি পড়ছে। শীতকালের কলকাতা যেন আরো নিঝুম হয়ে এসেছে। আমাদের দ্বিধাদীর্ণ জীবনে নিজেকে পাওয়ার প্রশ্নটা প্রচ্ছন্ন থেকে যায়। বাইরে তো প্রচণ্ড কোলাহল। ভাবছি যে এখন করার মত কাজ দেড়শোটা আছে। যদি কিছুই না করি? কিছুক্ষণ অলোকরঞ্জন, গ্যোয়েটে, রবীন্দ্রনাথ থাকুন মুখোমুখি। কেমন হয় যদি 'বাহির'-কে বিরল করে দিই?

‘চিন্তা' তার শাখা প্রশাখা ক্রমশঃ বড় করছে। কত প্রতিভাবান ছেলেমেয়ে পড়ছে, পড়াচ্ছে। আমাদের রিসার্চ গ্রুপ গুলো কাজ করতে শুরু করেছে। গ্রামাঞ্চলে একাধিক ম্যাথ সার্কেল চলছে পুর্ব ইউরোপের ধাঁচে। এ সবের সাথে বাইরে প্রচন্ড কোলাহল। মানুষের শিখতে চাওয়ার, জানতে চাওয়ার অন্তর্বস্তুতে যে একাকীত্ত্ব আছে তার থেকে হয়ত আমরা ক্রমশঃ সরে আসছি।

রাসেল বলেছিলেন 'কসমিক লোনলিনেস'। মানুষ যখন 'জানে' অথবা ঠিক যে মুহুর্তে তার 'জানতে পেরেছি' অনুভুতি হয়, সে মুহুর্তে সে কি দুরন্ত ভাবেই না একা। এক বিরল বাহিরে সে হঠাৎ-ই নিজের মুখোমুখি হয়। সেই মুহুর্তে তার সেই ভীষণ রকম একা হয়ে যাওয়াকে আমরা আমাদের পড়া-শেখার কারখানায় যথোচিত সম্মান দিই না। অথচ প্রকৃত শিক্ষণ সেই চূড়ান্ত একাকিত্ত্বের, সেই অসহ্য আনন্দের প্রস্তুতি বই তো কিছু নয়।

রবীন্দ্রনাথের 'অতিথি'কে আমাদের দেওয়ার কিছু নেই। এখনো নয়।

সমান্তরাল রেখা এবং গণিত অলিম্পিয়াডের জ্যামিতি | 'ভাবা প্র্যাকটিস' | Math Olympiad in Bengali

হিলবার্টের দ্বাদশ সমস্যা - সমিত দাশগুপ্ত, মহেশ কাকড়ে

সমিত দাশগুপ্ত এবং মহেশ কাকড়ে হিলবার্টের দ্বাদশ সমস্যাটি সমাধান করে ফেলেছেন। শতক প্রাচীন দুরুহ প্রশ্ন।

জার্মান গণিতজ্ঞ হিলবার্ট ১৯০০ সালে ২৩টি গাণিতিক সমস্যার একটা লিস্ট বানিয়েছিলেন। সমস্যা গুলো পরবর্তী শতকে বহু গণিতজ্ঞকে ভাবিয়েছে। এইটি তারই একটি। (দৈনিক আনন্দবাজার দাশগুপ্ত-কাকড়ে-র কাজটি নিয়ে একটি প্রতিবেদন লিখেছেন। দুঃখের বিষয় সেখানে বাঙালি-টাঙালি বলে কিসব একটা যেন তারা করতে চেয়েছেন। মুল সমস্যাটা নিয়ে কোনো কথা লেখেননি। সমাধানের প্রকরণ তো অউর দূর কি বাত)।

আমি নাম্বার থিয়োরিস্ট নই। তবু একটা চেষ্টা করছি সমস্যাটা কি বোঝানোর। খানিকটা ধৈর্য লাগবে। কিন্তু বোঝা যাবে। কতক গুলো শব্দ জানতে হবে।

[ফিল্ড] হচ্ছে এমন একটি সেট, যার মধ্যে থেকে যোগ, বিয়োগ, গুণ, ভাগ* করা যায়। ফিল্ডের যে কোনো দুটো সদস্যকে যোগ বা বিয়োগ করলে, সেই সেটের আরেকটি সদস্য পাওয়া যাবে। ফিল্ডের যে কোনো দুটো সদস্যকে গুণ অথবা ভাগ করলে, সেই সেটের আরেকটি সদস্য পাওয়া যাবে।

ফিল্ড যেন এক স্বয়ংসম্পুর্ণ জগৎ। যা হবে সেটের মধ্যেই হবে বাইরে বেরোবে না।

উদাহরণঃ { ১/২, ৫/৩, ০, -৩/৪, ... } - সমস্ত rational number (অর্থাৎ যে সব সংখ্যাকে দুটো গোটা সংখ্যার অনুপাত হিসেবে লেখা সম্ভব, তাদের সেট।

[গ্রুপ] হচ্ছে এমন একটি সেট যার মধ্যে থেকে শুধু যোগ বিয়োগ করা যাবে।
'যোগ' বলছি বটে কিন্তু সদস্যরা যদি সংখ্যা না হয়? তাহলেও যদি দুটি সদস্যকে 'মিলিত' করার কোনো পদ্ধতি বলতে পারি তাহলে সেই অপারেশনটিকে যোগের বদলে # বলব। মাথায় রাখতে হবে যে গ্রুপের সদস্যরা সংখ্যা নাও হতে পারে।

উদাহরণঃ {... -৩, -২, -১, ০, ১, ২, ৩, ... } ... সমস্ত গোটা সংখ্যা। যে কোনো দুটো গোটা সংখ্যাকে যোগ করলে অথবা বিয়োগ করলে গোটা সংখ্যাই পাওয়া যায়।

[ফিল্ড এক্সটেনশন] - একটা ফিল্ড যদি আরেকটার পেটের মধ্যে থাকে তাহলে বড় জন-কে ছোটটির ফিল্ড এক্সটেনশন বলা যাবে।

[Abelian গ্রুপ] - ধরা যাক G = {a, b, c, d, ... } একটি গ্রুপ। যদি a#b = b#a হয় তাহলে গ্রুপটিকে Abelian বলা হয়। কিছু কিছু গ্রুপের ক্ষেত্রে এমনটা হয় না। তারা Abelian নয়।
আমাদের কারবার হবে একটা ফিল্ড 'ক' এবং তার এক্সটেনশন 'খ' কে নিয়ে। 'ক' হচ্ছে ছোট জন। আরে তাকে পেটের মধ্যে রেখেছে বড়জন।

ক --> খ অবধি আমরা ফাংশন বানাতে পারি। ফাংশন মানে কি? ব্যাপারটা রংমিলন্তির মত। ক-এর প্রতিটি সদস্যকে কোনো একটা নিয়মে খ-এর সদস্যদের সাথে মিলিয়ে দিতে হবে। এই মিলিয়ে দেওয়ার এক একটি নিয়ম হচ্ছে এক একটি ফাংশন। এরকম অনেক নিয়ম (অনেক ফাংশন) থাকতে পারে। ফাংশন গুলোর একটি সেট বানানো যাক।

ক --> ক অবধিও ফাংশন হতে পারে। ক-এর সদস্যদের ক-এরই অন্য সদস্যদে সাথে মিলিয়ে দেওয়া যায়।

যেমন ধরা যাক ক = {সাহেব, বিবি, গোলাম}। এবার ক থেকে ক অবধি মিলন্তি খেলা যাক। ফাংশন বানানো যাক।

এমন আরো কতো ফাংশন হতে পারে। ফাংশনদের set কে আমরা Automorphism Group বলব। এই সেট-টাও একটা গ্রুপ তৈরী করে। এই গ্রুপের সদস্যরা হলো ফাংশন। সংখ্যা নহে।

ধরা যাক 'ক' হচ্ছে একটা ফিল্ড। খ হচ্ছে ক-এর ফিল্ড এক্সটেনশন। অর্থাৎ ক আছে খ-এর মধ্যে। এবার খ --> খ (বড়জন থেকে বড়জন) সব automorphism গুলো দেখা যাক। এই automorphism গুলোর মধ্যে কতকগুলো ফাংশন হলো 'ভালো ফাংশন'। ভালো ফাংশন গুলোর একটা গুণ আছে। তারা ছোট ভাইকে ঘরছাড়া করবে না। অর্থাৎ x যদি ক এর সদস্য হয়, তাহলে ভালো ফাংশন x কে x -এর সাথেই মিলিয়ে দেবে। নড়া চড়া করাবে না। এই ভালো ফাংশনের সেট-কে গ্যালোয়াঁ গ্রুপ বলা হয়। যদি এই গ্রুপটি abelian হয় তাহলে খ-কে ক-এর abelian field extension** বলা হয়।

অতঃপর হিলবার্ট কহিলেন, হে গণিতজ্ঞগণ, extensionটি যদি abelian হয় তাহলে বড়জনকে ছোটোটির রক্তমাংস থেকে গড়তে কেমনতর নতুন সদস্য লাগিবে?

অর্থাৎ ...

যদি L যে কোনো ফিল্ড হয় এবং K তার abelian এক্সটেনশন হয় তাহলে এই K -কে L -এর থেকে গড়ে তুলতে কি কি অতিরিক্ত সদস্য লাগবে? K যেহেতু L -এর বড়ভাই, বড় সেট যার মধ্যে L আছে, তাহলে K -এর মধ্যে আরো কিছু থাকতে হবে। এই 'আরো কিছু'-রা কারা? [যদি জানি যে এক্সটেনশনটি abelian]। সমিত দাশগুপ্ত, মহেশ কাকড়ে এই প্রশ্নটির উত্তর খুঁজে বার করেছেন।

**algebraic abelian extension বললে ভালো হত।

*ফিল্ডের মধ্যে ০ থাকবে। তাকে দিয়ে ভাগ করা যাবে না।